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The rich materials class of iron-based superconductors turned out to exhibit a very complex electronic
structure despite the simplicity of their crystal structures. For various approaches to study the instability against
magnetic order or superconductivity, a real-space description of the electronic structure is required. Here, the
bonding situation and the orbital structure of the electronic state are analyzed and minimum tight-binding
models quantitatively correctly describing the low-energy electronic structure are provided.
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I. INTRODUCTION

The discovery of high-temperature superconductivity in
La�O,F�FeAs �Ref. 1� immediately raised great expectations
to advance the theory of high-temperature superconductivity
in general, since the crystal structure appeared quite simple
and on a first glance displayed similarity to that of the cu-
prates. It quickly turned out, however, that there are also
striking differences, in particular of the correlated nature of
the electron state. The analysis of many problems in this
respect demands real space approaches based on tight-
binding �tb� models. An early paper in this direction used a
two-orbital tb model.2 The need for gradually improving
such models was already clearly seen in this paper. Unfortu-
nately, improvements turned out to grow terribly in complex-
ity and hopping matrix elements up to the fifth neighbor
matter.3 The situation clearly calls for a detailed analysis of
the electronic structure in the tb language as complete as
possible. The present paper tries to contribute to this task.

Among the iron-based superconducting materials there
are essentially four structural families christened 11, 111,
1111, and 122 according to their stoichiometry in the un-
doped cases. FeSe and FeTe are representatives of the first
family,4 LiFeAs and NaFeAs represent the second,5

REOFePN, where RE is Y, La or a light rare-earth element
and PN is P, As or Sb, belong to the third,2,6 and AFe2As2,
where A is Ca, Sr or Ba, belong to the last.7 All families
exhibit a tetragonal structure at room temperature which
slightly distorts below the Néel temperature of the antiferro-
magnetic order. The first three families have the nonsymmor-
phic space group P4 /nmm in common, while the last family
crystallizes in the symmorphic space group I4 /mmm. The
unit cells of the first three families as well as the tetragonal
cell of the last �which contains two unit cells� are shown in
Fig. 1.

The generic structural element is a metallic iron
chalcogenide/pnictide layer consisting of a square iron atom
plane sandwiched between two chalcogen/pnictogen �c/p�
atom planes in such a way that every Fe atom is in the center
of a c/p tetrahedron. The families 11 and 111 consist of neu-
tral metallic layers only, stacked on top of each other in the
direction of the tetragonal axis and only weakly bonded in
this direction. Thereby LiAs is isoelectronic with Se. They
should easily cleave in planes perpendicular to the tetragonal
axis. In contrast, in the 1111 and 122 families the FeAs layer

is charged and anionic and is intercalated with a nonconduct-
ing cationic layer, e.g., LaO in the 1111 family and Ba in the
122 family. Hence, these materials cannot neutrally cleave
between intact atom layers.

Phenomenologically, superconductivity seems to be quite
robust in the �doped� families 1111 and 122, but more sensi-
tive to imperfections in the families 11 and 111. This at least
goes in line with a remarkable structural difference revealed
in Table I. For representatives of the four families this table
shows the nearest in-plane Fe-Fe distance d in Å, and the
ratio r of the distance of c/p layers from the Fe layer related
to the in-plane Fe-Fe distance. This latter ratio would be 0.5
in the case of regular c/p tetrahedra. As is evident from Table
I, the cationic interlayers of the 1111 and 122 families put the
Fe layer under considerable tensile strain and in line with
that the c/p tetrahedra are considerably contracted in the di-
rection of the tetragonal axis. The ratio r is by the way un-
usually badly reproduced by lattice relaxation within non-
magnetic density-functional theory �DFT� and it seems to be
somewhat sensitive to magnetic order. Which of the Fe 3d
bands cross the Fermi level and the sequence in energy of
these bands depends on the actual value of r and often differs
for the experimental value and for the DFT relaxed value.

All results presented in this paper refer to the experimen-
tal structure data and to the nonmagnetic state.

The aim is to provide tb models of the low-energy back-
ground electronic structure on the basis of which collective
behavior such as magnetism and superconductivity may de-
velop and may be analyzed by many-body theories. It will be
shown that the low-energy physics is essentially more two-
dimensional �2D� in the families 1111 and 122 than in the
other two, again distinguishing the lower two families of
Table I from the upper two.

In Fig. 2 the essential atomic-shell resolved partial densi-
ties of states �DOS� together with the total DOS are
shown for the experimental structure parameters of FeSe �a
=3.7734 Å, c=5.5258 Å, zSe=0.267, zFe=0�.8 All band
structures in this work are obtained with the high precision
full-potential local orbital code FPLO8 �Ref. 9� using the
Perdew-Wang 92 �Ref. 10� version of the local-density ap-
proximation �LDA� density functional. Generalized gradient
approximation �GGA� results would somewhat differ in the
lattice relaxation by total energy minimization. Since, how-
ever, for given fixed structural parameters the results consid-
ered here hardly differ at all, and all results presented in this
text are for the experimental structures, LDA was used
throughout.
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For what follows it is relevant that the all-electron ap-
proach FPLO8 uses a carefully optimized “chemical” basis
�one basis orbital per atomic core or valence orbital� plus at
most one polarization orbital per band. The quality of the
chemical basis results in occupation numbers of polarization
orbitals usually well below 0.02 �per spin�, in most cases
even much lower �without loss in accuracy which competes
with any of the advanced all-electron full-potential tools
presently available. For instance, in a recently published
work11 results for the 1111 compound LaOFeAs obtained
with different band structure methods were compared and
very good agreement between FPLO and FPLAPW results
was assessed. This is the reason why projections on the
FPLO chemical basis orbitals have a lot of chemical rel-
evance, and also produce nearly optimally localized Wannier
orbitals from band structures in an approach described below
in Sec. IV.

The situation shown in Fig. 2 which is generic for all four
families considered here can be understood as follows: since
there are two Fe atoms per unit cell, there is Fe-Fe homoco-
valency. Put the structural layers in the xy plane stacked in z
direction. For zero wave vector there are in-plane bonding
combinations of Fe 3d orbitals with angular dependence
xy /r2 and �x2−y2� /r2, respectively, with the same coefficient
on both sites and antibonding combinations with sign-
alternating coefficients. For the angular dependence xz /r2

and yz /r2 it is just the other way round, while the orbitals
��z2 /r2−3� form essentially nonbonding bands. Hence,
there are four Fe-Fe bonding bands, four Fe-Fe antibonding
bands, and two nonbonding bands. The Se 4p orbitals may
couple with the Fe-Fe antibonding combinations only, devel-
oping Fe-Se heterocovalency with predominantly Se 4p
bands below −3 eV and predominantly Fe 3d bands above
the Fermi level �the latter put at zero-band energy�. The

Fermi level itself falls in a Fe-Fe covalency pseudogap be-
tween the bonding plus nonbonding bands of essentially pure
Fe 3d character and the antibonding bands of hybridized
Fe 3d-Se 4p character. This picture prevails in large parts of
the Brillouin zone �BZ� and only modifies in the vicinity of
the BZ edges parallel to the z axis �through point M of Fig. 9
below�. It results in rather small hole Fermi surfaces �FS� of
Fe-Fe bonding bands around the kz axis and in likewise small
electron FS around the BZ edges parallel to this axis, and
hence in the pseudogap at the Fermi level. The materials are
not far from semimetals.

There is also Fe 4s-Se 4p covalency with a gap of about 7
eV as seen on the bottom of Fig. 2. The modifications in the
other families compared to 11 are gradual, see Figs. 3–5.
Since the As 4p states are about 1 eV higher than the Se 4p
states, the gap below −2 eV is less pronounced or absent in
the arsenides. In LiFeAs the pseudogap at the Fermi level is
less pronounced too as the Fermi radii are somewhat larger
�larger energy overlap between Fe-Fe bonding and antibond-
ing band groups�. In LaOFeAs and BaFe2As2 there is also no
gap above 2 eV as the La 4f states and the Ba 5d states,
respectively, come down close to the Fermi level. �About 0.4
Ba 5d states are occupied in BaFe2As2 while, when doping
with K, the K 3d states remain empty; this is why one K
atom when replacing Ba donates only about 0.6 holes or 0.3
holes per Fe atom into the Fe 3d bands.� Moreover, the O 2p

TABLE I. Structural parameters of the four families as de-
scribed in the text.

Family Representative d r

11 FeSe 2.6653 0.5350

111 LiFeAs 2.6809 0.5614

1111 LaOFeAs 2.8497 0.4620

122 BaFe2As2 2.8019 0.4855

FIG. 1. �Color� From left to right: unit cells of FeSe, LiFeAs,
LaOFeAs, and BaFe2AS2 �the tetragonal cell contains two unit cells
in the latter case�.
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FIG. 2. �Color� Partial and total DOS for FeSe. The Fermi level
is at 0 eV.
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FIG. 3. �Color� Partial and total DOS for LiFeAs. Experimental
structure parameters from Ref. 12.
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states of LaOFeAs appear below −2 eV in addition to the
As 4p states. In the range between −2 eV and the Fermi
level there is not so much difference in the bands being al-
most purely Fe 3d in all cases.

The whole situation with Fe 3d-Fe 3d and Fe 3d-c /p-4s
covalency is illustrated for the generic example of FeSe in
Fig. 6. The projection of the LDA bands on the FPLO chemi-
cal basis orbitals is given as line thickness in color code.
�The diameter of the color balls in the legend of the figure
indicates the thickness for 100 percent orbital content in the
band wave function.� The cyan �c /p-pz� band on the line �-Z
which disperses down close to the Fermi level has a black
component �Fe xy� hidden behind the cyan and amounting to
about half of the band state near Z. The narrowness below
the Fermi level of the nonbonding Fe z2 bands is clearly
seen. Again seen is that the Fe-Fe bonding bands below the
Fermi level do not hybridize with the c /p-4p orbitals while
Fe-Fe antibonding bands strongly hybridize. Due to the far
extend of the radial orbitals, the c /p-4p states extend even
above the Fe 3d bands, over an energy range of more than 10
eV. It is also seen that the Fermi level is crossed by Fe xy, xz,
and yz bands only with a small admixture of c /p4pz orbitals.
Right below Fermi level Fe x2−y2 and z2 admixture sets in,
so that one fails to reproduce Fermi velocities even qualita-
tively without consideration of the latter orbitals and their
corresponding bands.

Remarkable in this respect is also the orbital anisotropy of
the FS, again in stark contrast to the case of the cuprates.
While the three FS hole cylinders around �-Z appear more or
less orbitally isotropic with one of the outer cylinders and the
inner cylinder of xz−yz character �of course with their mix-
ing rotating together with k� and the other outer cylinder of
xy character, the outer FS electron cylinder around M in the
kz=0 plane appears totally orbitally anisotropic with xz−yz
character in the directions toward X and nearly pure xy char-
acter in the directions toward �. The inner electron cylinder
is again more or less orbitally isotropic with xz−yz character.
In the kz=� plane the inner and outer electron cylinders have
interchanged their orbital character.

In all those considerations the presence of the c/p atoms is
essential. Without there presence, the unit cell would reduce
to containing one Fe atom only, and no interband Fe-Fe co-
valency could develop. In Fig. 7 the DOS of a hypothetical
lattice is shown with the Se atoms removed from the FeSe
crystal, but the Fe atoms left at their positions. The Fe 3d
occupation remains nearly the same �Mullikan analysis with
the FPLO8 basis results in charge transfer between Fe and
c/p of less than 0.1 electron charge/atom�, but no pseudogap
whatsoever appears as there are now only five Fe 3d bands in
the doubled BZ. There is also no covalency band gap of the
Fe-4s states any more. Fe-Fe covalency appears only due to
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FIG. 4. �Color� Partial and total DOS for LaOFeAs. Experimen-
tal structure parameters from Ref. 13.
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FIG. 5. �Color� Partial and total DOS for BaFe2As2. Experimen-
tal structure parameters from Ref. 14.
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FIG. 6. �Color� Orbital projection of the LDA band structure of
FeSe. �See Fig. 9 for the points �, X, M; Z, R, and A are above the
former at kz=�.�
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FIG. 7. �Color� Partial and total DOS for a hypothetical struc-
ture obtained by removing the Se atoms from FeSe.
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the doubling of the unit cell caused by the presence of the c/p
atoms, due to their additional potential and due to hybridiza-
tion with c /p-p orbitals. Also, the width and depth of the
pseudogap are quite sensitive to the c/p position, that is, to
the actual value of the Wyckoff parameter zc/p.

In a vicinity of half an eV around the Fermi level, the
band structure in the 1111 family exhibits a pronounced
quasi-2D character. It is somewhat less 2D and in a narrower
energy window at the Fermi level in the 122 family and
much more three-dimensional �3D� in the 11 and 111 fami-
lies.

In the next section the implications of symmetry on the
electronic structure are analyzed in detail. This provides
some key to the construction of reduced tb models. In Sec.
III, a minimum 2D tb model is derived for reasonable quan-
titative approximations of the low-energy band structures of
the Fe-c/p layers �the focus being essentially on excitation
energies below 0.1 eV� and parameters are given for repre-
sentatives of all four families. These are based on a Wannier
function representation introduced in Sec. IV. The families
11 and 111 exhibit quite sizable 3D dispersion close to the
Fermi level. Corresponding 3D tb models for these cases are
given in Sec. V and finally the results are summarized in Sec.
VI.

II. SYMMETRY OF THE IRON CHALCOGENIDE/
PNICTIDE LAYER

The 11 family consists of the Fe-c/p layers only generic
for all four families. To be specific, FeSe is taken as example
in what follows. We start with a more detailed description of
the FeSe structure.

The two Fe and Se positions per unit cell are symbolically
distinguished by a sign. Atom positions are �Fig. 8�

S�Fe =
1

4
��R1 � R2� ,

S�Se =
1

4
��R1 � R2� � zSeR3. �1�

The vectors Tx and Ty of Fig. 8 are not lattice vectors of the
full structure. However, in combination with a reflection n on
the �x ,y� plane they nevertheless form nonsymmorphic sym-
metry elements �n �Tx�, �n �Ty� �diagonal glide plane,
�n �Tx���r�=��n−1r−Tx�, n−1=n�. Applied to a Bloch state
�k��r�, any space group element yields �A �TA+Rl��k��r�
=exp�i�Ak� ·Rl��Ak� �r�, where � is the band index and �Ak� �r�
is a linear combination of states �Ak���r� with the restriction
	Ak��=	k� on the band energies. �Tn=Tx, some one-one rela-
tion A↔TA must be chosen, �n �Ty�= �n �Tn+R2�. Moreover,
the result of �A �TA+Rl��k��r� is based on a chosen phase
relation between �k��r� and �Ak� �r�, which choice is made
here for the sake of simplicity different from that later in
Eqs. �10� and �16�; the results considered here do not depend
on this choice.� One has �A �TA��B �TB�= �AB �TAB+RAB�,
where RAB is a lattice vector. If, for the wave-vector group of
k, ��A �TA+Rl� �Ak=k+GA� where GA is a reciprocal
lattice vector, one defines the multiplier representation

���

A �k�=exp�−ik ·Rl�	�k����A �TA+Rl���k�
, then


A
B = exp�ik · RAB�
AB �2�

follows. Time inversion T is defined as the antiunitary
operator T��r�=���r� and hence T�k�=�−kT� and
T�A �TA+Rl�= �A �TA+Rl�T. Now, if m2 is the reflection plane
through iron sites sending R2→−R2, then the antiunitary op-
erator �=Tm2�n �Tn� is an element of the wave vector group
for any wave vector k with k ·R1= ��, that is, on the face of
the BZ with central point X �Fig. 9�, and 
��k�
��k�=−1 for
any such k since �2= �1 �R1�. The existence of an antiunitary
operator with square equal to −1 which commutes with the

y

x

R2+Fe +Se

−Fe−Se

R1

Tx

Ty

FIG. 8. Tetragonal plane of nine unit cells �full-line squares�
spanned by lattice basis vectors R1 and R2 of FeSe. The open
circles mark Se positions above and the shadowed circles below the
drawing plane. The Fe sites �full circles� are located in the drawing
plane. If the Se sites are neglected, the half-size unit cell is spanned
by Tx and Ty as shown in the left lower corner.

M

Γ′

ky

k2

Γ X

kx

k1

FIG. 9. BZ of the structure of Fig. 8, dashed for the Fe structure
alone �one Fe atom per cell� and full lines for the full FeSe struc-
ture. The wave-number components are scaled so that the symmetry
points are �kx ,ky�= �0,0� for �, �� /2,� /2� for X, �� ,0� for M, and
�� ,�� for ��, as well as �k1 ,k2�= �0,0� for �, �� ,0� for X, �� ,��
for M, and �2� ,0� for ��.
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Hamiltonian is an analog to Kramers degeneracy,15 and an
immediate consequence here is a twofold degeneracy of all
bands on the four side faces of the BZ. �R1 and R2 may be
interchanged in the above considerations, with m2 replaced
with m1.� One also has −�m1�n �Tn�+ �n �Tn�m1� /2
=21

2 , �m2�n �Tn�+ �n �Tn�m2� /2=21
1, where 21

2 is a screw ro-
tation by � around the axis through the lattice vector R2 of
Fig. 8, accompanied by a glide by the vector R2 /2, and 21

1 is
the corresponding screw rotation around R1 as given in that
figure. The notation of space group elements follows
Hermann-Mauguin.16 We prefer to use the two reflections in
the considerations of hopping matrix elements below.

This is all generally true for the P4 /nmm space group
�which is also the space group of a single FeSe layer of Fig.
8�. Hence, it holds for the 11, 111, and 1111 materials �FeSe,
LiFeAs, and LaOFeAs as examples�. It does not hold for the
122 materials �e.g., BaFe2As2� which crystallize in the
I4 /mmm structure �body-centered tetragonal�. The space
group I4 /mmm is symmorphic and hence there appear no
multipliers different from unity in representations of wave-
vector groups and no twofold degeneracies on whole BZ
faces. These degeneracies only reappear, if one neglects
z-axis dispersion. In the following we first focus on the layer
structure of Fig. 8 which is representative for all four fami-
lies, if z-axis dispersion is neglected.

The full crystal potential V must be invariant under all
symmetry operations including lattice translations and glide
reflections. With respect to the latter, it can be decomposed
into a part V+ that is invariant under both the Tx or Ty trans-
lations and the reflection n on the �x ,y� plane separately and
a part V− that is alternating with respect to both separate
operations. This potential representation will be used in the
next section.

Further important symmetry transformations of all struc-
tures with the P4 /nmm space group are a �-rotation 2x

around the x axis of Fig. 8�a� �-rotation 2y around a parallel

to the y axis through Fe sites and the spatial inversion 1̄ with
its center halfway between any of the pairs �X of atoms �all
pairs have the same midpoint�. Nonzero Hamiltonian matrix
elements must either be invariant under symmetry transfor-
mations of the structure or transform into each other.

Due to the presence of the glide plane �n �Tn�, all atom
positions within the unit cell of the layer of Fig. 8 or more
generally of a crystal with P4 /nmm space group come in
symmetry equivalent pairs �X such as �Fe and �Se in Fig.
8. Denote local site orbitals of a local orbital basis corre-
spondingly by a sign superscript as ��. �This superscript is
to be well distinguished from the sign subscript on V� for the
component of the crystal potential which has a different
meaning defined above, although related to the same symme-
try element.� Expanded in this basis, the Hamiltonian may be
brought into a block matrix structure

H = �H++ H+−

H−+ H−− � , �3�

where, if one denotes hopping matrix elements by tij
rst for

hopping a distance rTx+sTy + tR3, r ,s integer, between local
site orbitals �i and � j �of either superscript�, then hoppings

with r+s even �accompanied with corresponding Bloch
phase factors� enter H++ and H−− while hoppings with r+s
odd enter H+− and H−+.

Note that the antiunitary transformation T1̄ is an element
of the wave-vector group for every wave vector k, this time

with �
T1̄�2=+1 and, hence, not causing a degeneracy. The
local site orbitals may always be chosen so that

T1̄�� = ��, �4�

this time also for the 122 structure, in all cases with respect

to the center of inversion 1̄ half way between nearest Fe
neighbors.

For instance, if in a natural way the local site orbitals are
parity eigenstates, appropriate imaginary factors at odd par-
ity orbitals do. Then, for the hopping matrix elements

one has 	�−�Ĥ��−
= 	T1̄�−�Ĥ�T1̄�−
�= 	�+�Ĥ��+
� and

	�−�Ĥ��+
= 	�+�Ĥ��−
�. It immediately follows that with this
basis choice �which is always possible and even the natural
one�

H = � H++ H+−

H+−� H++� � . �5�

Since generally H−+=H+−†, it also follows that the block ma-
trix H+− must be symmetric:

H+−t
= H+−, �6�

where Ht means the transposed of H. This reduces the cal-
culation of Hamiltonian �and overlap� matrix elements by a
factor of two.

III. TIGHT-BINDING BANDS FOR THE IRON
CHALCOGENIDE/PNICTIDE LAYER

In this section tb models for the iron c/p layers are con-
sidered. Again, to be specific, the discussion is first for FeSe
and then generalized. Fe 3d orbitals are denoted by their an-
gular character and by an upper sign indicating centering at
site S�Fe as in the previous section for the general case. For
instance �ixz�+ means a real orbital with angular dependence
xz /r2 centered at S+Fe, multiplied with the imaginary unit
factor later being used to get real Hamiltonian matrices; �z2�
abbreviates the real orbital with angular dependence
�3z2−r2� /r2. The following site orbitals �� within a unit cell
are introduced which obey Eq. �4�:

1: �xy�+, 6: �xy�−,

2: �x2 − y2�+, 7: �x2 − y2�−,

3: �ixz�+, 8: �− ixz�−,

4: �iyz�+, 9: �− iyz�−,

5: �z2�+, 10: �z2�−. �7�

The numbering of orbitals will later be used for �lower� ma-
trix indices of the hopping matrices tij. If in what follows no
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superscript is applied, then � means an orbital either on site
S+Fe or on S−Fe.

There are four distinct onsite Hamiltonian diagonal matrix
elements �the subscript i being again the number from Eq.
�7��

�i, �4 = �3, �i+5 = �i, �8�

while due to orbital onside orthogonality there are no onside
Hamiltonian off-diagonal matrix elements. The 10
10
Hamiltonian matrix in site orbital representation has an ob-
vious 5
5 block structure Eqs. �5� and �6�.

Since only one layer is considered, only in-plane hop-
pings tij

rs a distance rTx+sTy figure, a fact relevant in what
follows. Now one has to distinguish matrix elements, the
orbital products of which are even with respect to reflection
on the �x ,y� plane and which hence are coupled by the
kinetic-energy operator and by V+, from the ones, the orbital
products of which are odd with respect to reflection on the
�x ,y� plane and which hence are coupled by V−. The former
are �superscripts dropped, i , j=1, . . . ,5� tii, t12, t15, t25, and t34
their transposed and the corresponding ti+5,j+5, ti,j+5, and
ti+5,j. The latter are tij , i=1,2 ,5 ; j=3,4 their transposed
and the corresponding ti+5,j+5, ti,j+5, and ti+5,j.

For the former one has immediately ti+5,j+5= tij and
ti+5,j = ti,j+5, respectively, while for the latter the same rela-
tions are the consequence of our phase choices in Eq. �7�.
With our choice of the orbitals the former matrix elements
are real while the latter are purely imaginary. The matrix
elements t55 and t5,10 between the essentially nonbonding or-
bitals are small and are neglected further on.

Considering the symmetry transformations of the struc-
ture it is easily found that the nine distinct nonzero first-

neighbor hoppings are t16
10= t16

1̄0= t16
01= t16

01̄, t18
10=−t18

1̄0= t19
01=−t19

01̄,
t27
10=¯, t29

10=−t28
01=¯, t2,10

10 =¯, t38
10= t49

01=¯, t49
10= t38

01=¯, and
t4,10
10 = t3,10

01 =¯, where we did not spell out all relations which
follow rather obviously from the above-mentioned symmetry
transformations of the structure and of the orbital products
from which also the relations ti,j+5

mn = tj,i+5
mn , m+n odd follow.

As an example, one of the above relations, t18
10=−t18

1̄0, is ob-
tained by a �-rotation 2y which transforms �xy�+ into −�xy�+

and �ixz�− into itself shifted by a translation �m ,n�= �−2,0�.
t18
10= t19

01 is obtained by an m2 reflection. As an example of the
last mentioned type �ti,j+5

mn = tj,i+5
mn �, t18

10= t36
10 is obtained by a

�-rotation 2x changing the sign of the orbital �xy�+ but not
that of �−ixz�−, and a subsequent shift by Tx mapping �xy�+

to �xy�− and �−ixz�− to ��ixz�+��. Since �ixz�+ couples to �xy�−

via V−, the Tx shift changes the sign of the matrix element
back. On the other hand, in t2,10

10 = t57
10 no sign change in orbit-

als happens in the �-rotation 2y and no sign change in the
shift by Tx since this time the orbitals couple via the kinetic-
energy operator and V+.

There are also nine distinct nonzero second-neighbor hop-
pings tij

11, i , j=1, . . . ,5, while t12
11=0, t25

11=0, t14
11= t13

11, and
t24
11=−t23

11 both latter cases by an m2 reflection, t44
11= t33

11,
t45
11= t35

11, and tij
mn= tji

mn , m+n even. For instance for ij=11 the
latter relations are obtained by an m1 reflection, and, for i or
j or both equal to 3 or 4, by an additional m2 reflection. As
already obtained in the general case, ti+5,j+5

11 = tij
11.

Since we try to limit the number of parameters as much as
possible and we focus on the low-energy vicinity of the
Fermi level, we neglect t55 and t5,10 for the Fe-Fe nonbond-
ing bands which stay away from the Fermi level by more
than half an eV. �Note, however, that for the LDA or GGA
relaxed structure parameters these bands may even cross the
Fermi level; so far there are nevertheless no reasons to as-
sume that this happens in nature.� The hybridization param-
eters ti5 , i=1, . . . ,4 however cannot be neglected. They
strongly influence some Fermi velocities.

The hoppings t11 happen essentially through the c/p site.
Due to the large radial extent of the c /p-4p orbitals, nearest
neighbor c/p-c/p hopping along the c/p tetrahedron edges is
strong, and hence the effective Fe-Fe hoppings t20, t21, and
t22 are not yet small. In order to fit besides the FS radii, also
the Fermi velocities reasonably well, they must be taken into
account at least for the orbitals 1, 3, 4 and 6, 8, 9.

Figure 9 shows the two-dimensional BZ of the FeSe slab
of Fig. 8. A notation

k1 = kx + ky, k2 = − kx + ky �9�

is used and Bloch sums are defined as

�ki � 

l

�ie
ik·�Rl+Si�, �10�

where Si is the site of the basis orbital �i.
The Hamiltonian matrix H++ in Bloch state representation

is

H11
++ = �1 + 2t11

11�cos k1 + cos k2� + 2t11
20�cos�2k1� + cos�2k2�� ,

H12
++ = 0,

H13
++ = 2it13

11�sin k1 − sin k2� ,

H14
++ = 2it13

11�sin k1 + sin k2� ,

H15
++ = 2t15

11�cos k1 − cos k2� ,

H22
++ = �2 + 2t22

11�cos k1 + cos k2� ,

H23
++ = 2it23

11�sin k1 + sin k2� ,

H24
++ = 2it23

11�− sin k1 + sin k2� ,

H25
++ = 0,

H33
++ = �3 + 2t33

11�cos k1 + cos k2� + 2t33
20 cos�2kx�

+ 2t33
02 cos�2ky� + 4t33

22 cos�2kx�cos�2ky� ,

H34
++ = 2t34

11�cos k1 − cos k2� ,

H35
++ = 2it35

11�sin k1 + sin k2� ,

H44
++ = �3 + 2t33

11�cos k1 + cos k2� + 2t33
02 cos�2kx�

+ 2t33
20 cos�2ky� + 4t33

22 cos�2kx�cos�2ky� ,
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H45
++ = 2it35

11�sin k1 − sin k2� ,

H55
++ = �5,

Hji
++ = �Hij

++��. �11�

Of course, H++ is Hermitian and in agreement with Hermi-
ticity and our phase choice in Eq. �2� one finds that tij

11 is real
for tij

11= tji
11 and imaginary for tij

11=−tji
11. Hence, one finds that

Hij
++ is real. Together with Eq. �5� this also implies

H−− = H++. �12�

This reality is the consequence of absence of hoppings in R3
direction and does not hold in the more general case.

For H+− one finds

H16
+− = 2t16

10�cos kx + cos ky�

+ 2t16
21��cos k1 + cos k2��cos kx + cos ky�

− sin k1�sin kx + sin ky� + sin k2�sin kx − sin ky�� ,

H17
+− = 0,

H18
+− = 2it18

10 sin kx,

H19
+− = 2it18

10 sin ky ,

H1,10
+− = 0,

H27
+− = 2t27

10�cos kx + cos ky� ,

H28
+− = − 2it 29

10 sin ky ,

H29
+− = 2it29

10 sin kx,

H2,10
+− = 2t2,10

10 �cos kx − cos ky� ,

H38
+− = 2t38

10 cos kx + 2t49
10 cos ky

+ 2t38
21��cos k1 + cos k2�cos kx − �sin k1 − sin k2�sin kx�

+ 2t49
21��cos k1 + cos k2�cos ky − �sin k1 + sin k2�sin ky� ,

H39
+− = 0,

H3,10
+− = 2it4,10

10 sin ky ,

H49
+− = 2t49

10 cos kx + 2t38
10 cos ky

+ 2t49
21��cos k1 + cos k2�cos kx − �sin k1 − sin k2�sin kx�

+ 2t38
21��cos k1 + cos k2�cos ky − �sin k1 + sin k2�sin ky� ,

H4,10
+− = 2it4,10

10 sin kx,

H5,10
+− = 0. �13�

H+− is again real and hence

H+− = H−+. �14�

In total, the block structure Eq. �5� specializes to

H = �H++ H+−

H+− H++ �, �H+−�t = H+−. �15�

This Hamiltonian is easily block diagonalized. Consider
the Bloch sums

�k�
�i�r� = 


l

eik·�Rl+S���i
��r − Rl − S�� ,

i = 1, . . . ,5, �16�

with �i
� from Eq. �2� and form the combinations

�k�
s/a,i =

1
�2

��k�
+i � �k�

−i � , �17�

where s stands for symmetric and a for alternating. Overlap
of neighboring local orbitals is usually neglected in a tb ap-
proach.

If one, more generally, denotes with �i
� Wannier functions

with the same crystal site symmetry as Eq. (7), then overlap
in the original basis Eq. (7) is automatically included. This is
done in all that follows. �See also next section.�

Then, Eq. �17� immediately yields

Hss = H++ + H+−, Haa = H++ − H+−, Hsa = 0 = Has.

�18�

The next section deals with the determination of tb param-
eters from FPLO8 band structure results. Here, the tb model
Eqs. �11�–�18� for the case of FeSe is analyzed as a typical
example. The corresponding tb parameters are

t11
11 = 0.086, t16

10 = − 0.063,

t11
20 = − 0.028, t16

21 = 0.017,

t13
11 = − 0.056i, t18

10 = 0.305i ,

t15
11 = − 0.109, t27

10 = − 0.412,

�1 = 0.014, t22
11 = − 0.066, t29

10 = − 0.364i ,

�2 = − 0.539, t23
11 = 0.089i, t2,10

10 = 0.338,

�3 = 0.020, t33
11 = 0.232, t38

10 = 0.080,

�5 = − 0.581, t33
20 = 0.009, t38

21 = 0.016,

t33
02 = − 0.045, t49

10 = 0.311,

t33
22 = 0.027, t49

21 = − 0.019,

t34
11 = 0.099, t4,10

10 = 0.180i ,

t35
11 = 0.146i all in eV. �19�

Only in a few cases the on-site energies �i and the hopping
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matrix elements t directly obtained from the Wannier ap-
proach described in the next section are slightly renormal-
ized in order to grossly account for the neglected hoppings to
higher neighbors.

Figure 10 shows the obtained 2D two to five neighbor tb
bands in comparison with the full LDA bands of the 3D FeSe
crystal. For good reasons the focus of this treatment is on the
vicinity of the Fermi level. On first glance it seems not to be
an optimal fit there, in particular not around the points M and
A �see Fig. 9 for M, the points Z, R, and A are at
kz=� above �, X, and M�. However, due to hybridization
with the Se 4p states the Fe-Fe antibonding bands have a
sizable kz dispersion which cannot be provided by a 2D tb
model. The quality on average of neglect of kz dispersion of
this tb model is also seen from the comparison of the DOS in
Fig. 11 showing that the fit is not unreasonable close to the
Fermi level.

A further feature of the 2D tb model is the block diago-
nalization �18� of the Hamiltonian matrix by means of lattice
symmetry. There are two five-band groups in this model
which do not interact in the whole BZ. One group comes
from symmetric binary Wannier states �17� and one group
from alternating ones. From what was said in the Introduc-

tion it follows that each of the two groups contains two
Fe-Fe bonding and two Fe-Fe antibonding bands as well as
one essentially nonbonding band. The two groups are shown
in Fig. 12. Within each group there is no further decoupling
in the whole BZ. In other words, a further reduction in the
number of bands of a tb model necessarily demands inclu-
sion of �many� higher than second neighbors to mimic the
k-dependent interaction with the omitted bands.

On the side faces of the BZ the two groups are degener-
ate. As was demonstrated in Sec. II, this degeneracy is a
general property of the P4 /nmm space group. It enables to
fold out smoothly the ten bands into five bands in a doubled
BZ �Jones zone�.17 One may chose the ss-bands in the BZ
proper and the aa-bands folded out, or vice versa. It is now
clearly seen that in any case this is not an out folding of
antibonding bands against bonding bands. Were it so, a
pseudogap between bonding and antibonding bands could
not develop.

The other simplification, the reduction in a 10
10
Hamiltonian matrix to a matrix structure with two 5
5
blocks H++ �Hermitian� and H+− �symmetric�, is already
guaranteed by Eq. �4� which holds for the 122 family too, for
which there is no continuous outfolding. There is no addi-
tional benefit besides that.

In summary so far, without considerably worsening the fit,
no less than the 27 tb parameters �Eq. �19�� will do in rea-
sonably modeling the electronic structure of the iron
chalcogenides/pnictides, even if one focuses on the Fermi
level only. This is, unfortunately in stark contrast to the situ-
ation for the cuprates.

As can be inferred from Fig. 10�a� 2D tb fit for FeSe
cannot be very satisfactory for quantitative studies even in an
energy window of �0.1 eV around the Fermi level, relevant
for low temperature many-body approaches. This is different
for the families 1111 and 122. In this respect, although their
crystal structures are more complex their low-energy elec-
tronic structure is simpler and really distinctly 2D.

For LaOFeAs, the 2D tb parameters are obtained as

t11
11 = 0.120, t16

10 = − 0.167,

t11
20 = − 0.029, t16

21 = 0.027,
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FIG. 10. �Color online� Comparison of the 2D tb bands with the
full 3D LDA bands of FeSe.
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FIG. 11. �Color online� Comparison of the 2D tb DOS with the
full 3D LDA DOS of FeSe.
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ing to the Hamiltonian blocks Eq. �16� for FeSe.
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t13
11 = − 0.014i, t18

10 = 0.224i ,

t15
11 = − 0.172, t27

10 = − 0.348,

�1 = 0.163, t22
11 = − 0.038, t29

10 = − 0.315i ,

�2 = − 0.407, t23
11 = 0.079i, t2,10

10 = 0.296,

�3 = 0.053, t33
11 = 0.235, t38

10 = 0.093,

�5 = − 0.196, t33
20 = 0.023, t38

21 = 0.026,

t33
02 = − 0.025, t49

10 = 0.335,

t33
22 = 0.032, t49

21 = − 0.008,

t34
11 = 0.094, t4,10

10 = 0.126i ,

t35
11 = 0.111i all in eV. �20�

The corresponding low-energy 2D bands are compared with
the full 3D LDA bands in Fig. 13. Since here the FeAs layers
are separated by LaO layers which have no states in the
vicinity of the Fermi level, the full band structure has a pro-
nounced 2D character there, and consequently the 2D tb ap-
proximation is of high quality. It does not need improvement
by considering 3D dispersion. Nevertheless, for the LDA or
GGA relaxed structure instead of the here considered experi-
mental Wyckoff positions one of the z2-derived bands

crosses the Fermi level instead of the xy-derived one. This is
why many published band structures show a hole pocket
around Z instead of the third hole cylinder.

On the expense of an increase in the number of tb param-
eters to 44, of course a better overall fit of the 2D band
structure in a larger energy window can be obtained.3 Some-
what surprisingly, the situation for BaFe2As2 in a narrower
energy window is similar although not equally perfect. This
allows to treat the low-energy band structure of the 122 fam-
ily within the same space group P4 /nmm �and BZ� which is
the space group for one triple layer of FeAs, although the
space group of the full 3D crystal is I4 /mmm �due to an n
reflection of adjacently stacked FeAs triple layers�. As a con-
venient consequence, the Hamiltonian Eqs. �11� and �13�
with its simplifying block structure �Eq. �15�� applies.

The 2D tb parameters for BaFe2As2 are obtained as

t11
11 = 0.135, t16

10 = − 0.196,

t11
20 = − 0.027, t16

21 = 0.042,

t13
11 = − 0.024i, t18

10 = 0.218i ,

t15
11 = − 0.131, t27

10 = − 0.355,

�1 = 0.172, t22
11 = − 0.131, t29

10 = − 0.365i ,

�2 = − 0.236, t23
11 = 0.103i, t2,10

10 = 0.265,

�3 = 0.000, t33
11 = 0.204, t38

10 = 0.065,

�5 = − 0.590, t33
20 = 0.034, t38

21 = 0.020,

t33
02 = − 0.048, t49

10 = 0.312,

t33
22 = 0.024, t49

21 = − 0.024,

t34
11 = 0.118, t4,10

10 = 0.080i ,

t35
11 = 0.078i all in eV, �21�

and the low-energy bands together with the full 3D LDA
bands are shown in Fig. 14. �Note that we used the same path
along the BZ as for the other cases, although the symmetry
of the 122 system differs. This, however, facilitates compari-
son.�

Of course, in both Figs. 13 and 14 the tb bands on lines
�-X-M-� and Z-R-A-Z are identical, but the full 3D LDA
bands are not and the plot in particular also shows the dis-
tinct 2D character of the full bands and the quality of the 2D
fit.

For later use we also give the 2D tb parameters for
LiFeAs valid in connection with the Hamiltonian Eqs. �11�
and �13� although without a 3D generalization provided in
Sec. V the fit would not even qualitatively be correct. They
are
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FIG. 13. �Color online� Comparison of the 2D tb bands with the
full 3D LDA bands for LaOFeAs. �Top� full-energy window, �bot-
tom� zoom in the low-energy region.
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t11
11 = 0.079, t16

10 = − 0.016,

t11
20 = 0.020, t16

21 = 0.013,

t13
11 = − 0.090i, t18

10 = 0.281i ,

t15
11 = − 0.060, t27

10 = − 0.404,

�1 = − 0.188, t22
11 = − 0.032, t29

10 = − 0.353i ,

�2 = − 0.521, t23
11 = 0.087i, t2,10

10 = 0.313,

�3 = 0.200, t33
11 = 0.275, t38

10 = 0.125,

�5 = − 0.609, t33
20 = − 0.002, t38

21 = 0.056,

t33
02 = − 0.107, t49

10 = 0.359,

t33
22 = 0.012, t49

21 = − 0.048,

t34
11 = 0.102, t4,10

10 = 0.190i ,

t35
11 = 0.136i all in eV. �22�

IV. FPLO8 WANNIER FUNCTIONS

The determination of a Wannier function �WF� basis of
states �Ri
 with function index i at center Si in unit cell R,

though formally being a simple Fourier transform of the
Bloch states �k�
,

�Ri
 = 

k,�

�k�
U�i
k e−ik·R, �23�

becomes an art due to the inherent ambiguity of the choice of
the band index and k-vector dependent phase factors U�i

k .
There are basically three goals pursued, when calculating

WFs, the first being to obtain functions, which form a suit-
able basis for the setup of model Hamiltonians. This aim
usually implies that the resulting WFs should resemble basis
functions, which have a certain chemical characteristic. The
second goal is to reduce the degrees of freedom in the result-
ing model by projecting out high energy sectors resulting in
few-band models. The last goal is to obtain model Hamilto-
nians with as few as possible parameters, which is essentially
the requirement of maximal localization of the WFs. Refer-
ence 18 introduced a general method of calculating maxi-
mally localized WFs. Due to the nature of the problem at
hand this approach is rather involved.

In order to fulfill the condition on the chemical character-
istics it is in general desirable to pose symmetry restrictions
on the WFs. In a local-orbital scheme with an optimized
chemical basis set the basis orbitals usually show those char-
acteristics, however, the resulting basis is nonorthogonal.
Nevertheless, the local basis orbitals can be used as a starting
point for the definition of WFs of a certain symmetry, which
by construction have a high degree of localization.

We follow the ideas sketched in Ref. 19 and define a
projection of the Bloch functions �k�
 onto local test func-
tions �Si
. The resulting matrix elements 	k� �Si
 enter the
phase factors U�i

k . They assign weights to the Bloch states
entering the Fourier transform Eq. �23� such that the bands
with the largest test function character contribute the most. It
is very conceivable that optimized local basis orbitals are
among the best possible choices of test functions. Thus in the
simplest case we choose �Si
 to be a local orbital at the site S
with orbital quantum numbers i. Alternatively, a linear com-
bination of local orbitals �molecular orbital �MO�� centered
at the WF center S could be used, in which case i denotes the
characteristics of the MO.

The choice of the projector singles out all the bands ex-
hibiting a particular character. In order to construct few-band
models it is often desirable to additionally project out certain
parts of the band complex with a particular character, say one
is interested in WFs describing the antibonding part only.
This is achieved by introducing energy windows described
by functions hSi��k��, which are basically unity in the rel-
evant energy range and zero everywhere else.

All the projectors put together define the Bloch sums cor-
responding to the WFs

��ki� = �k�
hSi��k��	k��Si
 �24�

which in general will be nonorthogonal. A subsequent sym-
metric orthogonalization defines the orthogonal WF Bloch
sums.

(b)
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FIG. 14. �Color online� Like Fig. 12 for BaFe2As2. Above the
Fermi level the full LDA bands are strongly hybridized with Ba 5d
states.
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�ki
 = 

j

��kj��S−1/2� ji
k , �25�

where Sji
k = �kj �ki�. The resulting phase factors

U�i
k = 


j

hSj��k��	k��Sj
�S−1/2� ji
k �26�

are then used in the Fourier transform Eq. �23� to calculate
the WFs. They have predominately the character of the test
functions �Si
 and approximate the bands which exhibit this
character and lie in the chosen energy window. The WFs will
transform according to the symmetry of the test functions.
Due to the construction the largest part of the WF is actually
formed by the test function itself. Since we use optimized
chemical orbitals as test functions, the resulting WF will
have a high degree of localization.

Furthermore, this construction results in WF band struc-
tures which do not only fit the band energies but also the
orbital character of the bands. A band, which has predomi-
nantly a particular orbital character in the LDA bands will
have the character of the corresponding Wannier function in
the WF bands. Since the WFs are constructed to resemble the
orbitals the Wannier character reflects the original orbital
character. We confirmed this behavior explicitly by compar-
ing orbital/WF projected bands.

In the present work, we used the Fe 3d orbitals as test
functions. The energy window was chosen such that the
c /p-4p bonding bands were excluded from the energy win-
dow and only the 10 Fe-dominated bands were included.

V. THREE-DIMENSIONAL DISPERSION

As indicated in Sec. III, there are reasons to consider the
kz dispersion close to the Fermi level in the family 11 and
this becomes mandatory for the family 111. This increases
the number of parameters considerably since it is connected
with hopping through several layers, and, since there are no
vertical bonds, each of these hoppings adds also one vector
�R1 /2 or �R2 /2 �for hops from Fe to c/p� or �Tx or
�Ty �for hops from c/p to c/p or to a cation�.

In the 11 and 111 families, at least three hops are involved
from an Fe layer to the next Fe layer �trst with t= �1�, and
hence trs�1 with �r ,s�= �0,0� or ��1,0� or �0, �1� or
��1, �1� or ��2,0� or �0, �2� or ��1, �2� or ��2, �1�
are of the same order of magnitude and have to be consid-
ered together. �Li or Na orbitals of the 111 family are not
involved in the considered case.� For the vicinity of the
Fermi level it suffices to consider the kz dispersion of the xy,
xz, and yz bands. The additions to the Hamiltonian matrix
Eqs. �11� and �13� are �kz=� at BZ point Z�

H11
++ = H11

++ + �2t11
001 + 4t11

111�cos k1 + cos k2�

+ 4t11
201�cos kx + cos ky��cos kz,

H13
++ = H13

++ − 4t14
201 sin�2ky�sin kz,

H14
++ = H14

++ − 4t14
201 sin�2kx�sin kz,

H33
++ = H33

++ + �2t33
001 + 4t33

201 cos�2kx� + 4t33
021 cos�2ky��cos kz,

H44
++ = H44

++ + �2t33
001 + 4t33

021 cos�2kx� + 4t33
201 cos�2ky��cos kz,

H16
+− = H16

+− + 4t16
101�cos kx + cos ky�cos kz

+ 2t16
121��cos�k1 + ky� + cos�k1 + kx��exp�ikz�

+ �cos�k2 + ky� + cos�k2 − kx��exp�− ikz�� ,

H18
+− = H18

+− − 4�t18
101 sin kx + t19

101 sin ky�sin kz

+ 2it19
121�sin�k1 + ky�exp�ikz� − sin�k2 + ky�exp�− ikz�� ,

H19
+− = H19

+− − 4�t19
101 sin kx + t18

101 sin ky�sin kz

+ 2it19
121�sin�k1 + kx�exp�ikz� − sin�k2 − kx�exp�− ikz�� ,

H38
+− = H38

+− + 4�t38
101 cos kx + t49

101 cos ky�cos kz

+ 2t38
121�cos�k1 + kx�exp�ikz� + cos�k2 − kx�exp�− ikz��

+ 2t49
121�cos�k1 + ky�exp�ikz� + cos�k2 + ky�exp�− ikz�� ,

H39
+− = H39

+− + 4it39
101�cos kx + cos ky�sin kz,

H49
+− = H49

+− + 4�t49
101 cos kx + t38

101 cos ky�cos kz

+ 2t49
121�cos�k1 + kx�exp�ikz� + cos�k2 − kx�exp�− ikz��

+ 2t38
121�cos�k1 + ky�exp�ikz� + cos�k2 + ky�exp�− ikz�� .

�27�

Since the Hamiltonian matrix is now complex, Eq. �15� does
not hold anymore, but Eqs. �5� and �6� are still true.

For FeSe, of the 17 additional tb parameters contained in
Eq. �27� the 14 non-negligible parameters are �again all in
eV�

t16
101 = 0,

t11
001 = 0, t16

211 = − 0.017,

t11
111 = 0, t18

101 = 0.009i ,

t11
201 = 0.017, t19

101 = 0.020i ,

t14
201 = 0.030i, t19

211 = 0.031i ,

t33
001 = 0.011, t38

101 = 0.006,

t33
201 = − 0.008, t38

211 = − 0.003,

t33
021 = 0.020, t39

101 = 0.015,

t49
101 = 0.025,

t49
101 = 0.006. �28�

The comparison of the corresponding low-energy tb bands
with the full LDA bands is shown in Fig. 15. The fit close to
the Fermi level is probably about the best which can be
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achieved in this case with a total of 41 parameters. The ten
Fe-related bands of FeSe are separated from the rest of the
bandstructure by gaps �see Figs. 2 and 6�. If one takes the
full set of several hundred of tb parameters calculated from
our WFs, the fat �red� lines merge nearly perfectly the black
ones in Fig. 10 for all ten Fe 3d related bands shown. This
has been checked.

For LiFeAs, 16 of the 17 additional parameters contained
in Eq. �27� are relevant. They are

t16
101 = − 0.018,

t11
001 = 0.070, t16

211 = − 0.025,

t11
111 = 0.020, t18

101 = 0.008i ,

t11
201 = 0.005, t19

101 = 0.020i ,

t14
201 = 0.025i, t19

211 = 0.022i ,

t33
001 = − 0.004, t38

101 = 0,

t33
201 = − 0.003, t38

211 = − 0.014,

t33
021 = 0.031, t39

101 = 0.017,

t49
101 = 0.016,

t49
211 = 0.043. �29�

The corresponding bands are compared with the full LDA
bands in Fig. 16.

Besides the Fermi radii around M and A now being mark-
edly different, there now appears a Fermi pocked around �
with a FS crossing even the line �-Z. One radius around �
could be improved on the expense of many more hopping
parameters over larger distances only, which is again due to
the far extension of the As 4p orbitals.

Let us finally shortly re-examine the 122 system. With a
few z-hopping matrix elements, the tb fit in the wide-energy
window shown in Fig. 14 cannot really be improved since
the Ba 5d states, strongly hybridizing right above Fermi
level, are very extended. Nevertheless, a few of those hop-
pings yield a better overall picture. The matrix elements in
addition to Eq. �21� are

t11
101 = 0.061, t16

001 = − 0.161,

t14
2̄11 = − 0.029i, t38

001 = 0.080,

t33
101 = 0.030, t16

111̄ = − 0.041. �30�

Due to the different structure the additions to the Hamil-
tonian matrix are different from Eq. �27�. They are

H11
++ = H11

++ + 2t11
101�cos kx + cos ky�cos kz,

H13
++ = H13

++ + 2t14
2̄11�i sin kx cos�2ky�cos kz

+ cos kx sin�2ky�sin kz� ,
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FIG. 15. �Color online� Comparison of the kz-dispersed tb bands
with the full LDA bands for FeSe. �Top� full-energy window, �bot-
tom� zoom in the low-energy region.

(b)

Γ X M Γ Z R A Z
−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

E
ne

rg
y

ε n
(k

)
[e

V
]

full LDA bands

tb bands

(a)

−0.20

−0.10

0.00

0.10

0.20

Γ X M Γ Z R A ZΓ X M Γ Z R A Z
E

ne
rg

y
ε n(k

)
[e

V
]

FIG. 16. �Color online� Like Fig. 15 for LiFeAs.
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H14
++ = H14

++ + 2t14
2̄11�sin�2kx�cos ky sin kz

+ i cos�2kx�sin ky cos kz� ,

H33
++ = H33

33 + 4t33
101 cos kx cos kz,

H44
++ = H44

33 + 4t33
101 cos ky cos kz,

H16
+− = H16

+− + 2t16
001 cos kz

+ 2t16
111̄�cos k1 exp�− ikz� + cos k2 exp�ikz�� ,

H38
+− = H38

+− + 2t38
001 cos kz,

H38
+− = H38

+− + 2t38
001 cos kz. �31�

This 3D tb fit is shown in Fig. 17. As is seen, there is one
band �essentially of Ba 5d character� coming down close to
the Fermi level which is not represented by the Fe 3d tb fit.
At variance to the case of LiFeAs, here the 3D dispersing

bands are, however, all unoccupied �and even move away
from Fermi level under hole doping�.

If one plays with the c/p-Wyckoff parameter or with
larger ordered magnetic moments causing large additional
exchange potentials and band shifts, the 3D behavior and
maybe a FS crossing the line �-Z can reappear even for the
1111 and 122 families. This would put serious questions on
the practicability of the tb approach at all, and one would
probably have to go back to a full numerical WF treatment of
the band structure.20

VI. CONCLUSIONS

We have demonstrated that the band structures of the non-
magnetic undoped iron-based superconductors for all four
families have a quite complex multiorbital character with all
10 Fe 3d orbitals per unit cell involved in band states in a
0.1 eV vicinity of the Fermi level. Thereby, the states at the
Fermi level are mainly of xz, yz, and xy character, respec-
tively. However, departing from the Fermi level, the other
Fe 3d orbitals and even the c /p-4p orbitals start to hybridize
and largely influence the Fermi velocities.

While the most investigated families 1111 and 122 exhibit
clear 2D behavior in the low electronic energy regime, this is
much less the case for the family 11 and not at all true for the
family 111. Minimum quantitatively correct tb models are
presented for FeSe, LiFeAs, LaOFeAs, and BaFe2As2 as rep-
resentatives for the four families.

A minimum number of 27 tb parameters seems not to be
reducible without severe loss of accuracy of the correspond-
ing Fermi radii, Fermi velocities, and orbital character on the
FS. For families 11 and 111 even that is not sufficient and the
minimum number of tb parameters goes beyond 40.
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